转跳到内容

关于Galois群的分布规律


推荐贴

这是我最近在研究的一个课题, 关于对任意单调多项式

$X^n + a_{1}X^{n-1} + \dots + a_{n-2}X^{1} + a_{n-1}$, where $x \in \mathbb{Z}$ $a_{1} \dots a_{n-1} \in \mathbb{Z}$

根据拟定n和每项系数的取值范围,我们可得有限数量的多项式,其中部分为不可分多项式(irreducible),根据Galois群的定义,我们易得其存在Galois群同构于某些有限单群。

例如当 n =3, 各项系数取值为[2,-2], 那么总共存在125个多项式,其中72个为不可分多项式,72个里有68个同构于S3,4个同构于C3。

关于这个我写了个程序导出对应取值的多项式,输出如下:

对于n=2, 系数取值[-10,10]

引用
We have in total  9 polynomials
We have 5 irreducible polynomials
('C2', 5)
We have in total  25 polynomials
We have 15 irreducible polynomials
('C2', 15)
We have in total  49 polynomials
We have 33 irreducible polynomials
('C2', 33)
We have in total  81 polynomials
We have 56 irreducible polynomials
('C2', 56)
We have in total  121 polynomials
We have 90 irreducible polynomials
('C2', 90)
We have in total  169 polynomials
We have 128 irreducible polynomials
('C2', 128)
We have in total  225 polynomials
We have 178 irreducible polynomials
('C2', 178)
We have in total  289 polynomials
We have 232 irreducible polynomials
('C2', 232)
We have in total  361 polynomials
We have 295 irreducible polynomials
('C2', 295)
We have in total  441 polynomials
We have 365 irreducible polynomials
('C2', 365)

对于n=3,系数取值[-10,10]:

引用
We have in total  27 polynomials
We have 12 irreducible polynomials
('S3', 12)
We have in total  125 polynomials
We have 72 irreducible polynomials
('S3', 68)
('C3', 4)
We have in total  343 polynomials
We have 226 irreducible polynomials
('S3', 216)
('C3', 10)
We have in total  729 polynomials
We have 514 irreducible polynomials
('S3', 496)
('C3', 18)
We have in total  1331 polynomials
We have 1002 irreducible polynomials
('S3', 976)
('C3', 26)
We have in total  2197 polynomials
We have 1704 irreducible polynomials
('S3', 1668)
('C3', 36)
We have in total  3375 polynomials
We have 2718 irreducible polynomials
('S3', 2670)
('C3', 48)
We have in total  4913 polynomials
We have 4036 irreducible polynomials
('S3', 3972)
('C3', 64)
We have in total  6859 polynomials
We have 5756 irreducible polynomials
('S3', 5654)
('C3', 102)
We have in total  9261 polynomials
We have 7878 irreducible polynomials
('S3', 7760)
('C3', 118)

对于n=4的情况我的电脑不允许我得出数据(系数取值超过3之后需要半个多小时才能算出结果).

我之前以为最简单的关于多项式数量的规律,是p^n, p为素数且大于等于3。但是在n=3的里面出现了9不是素数的情况。

其他的我完全看不出来有啥规律,求大佬们一起帮忙看看! 非常感谢!:SS01:

链接到点评
  • 攸薩锁定了本主题
游客
此主题已关闭。
×
×
  • 新建...

重要消息

为使您更好地使用该站点,请仔细阅读以下内容: 使用条款